Abstract

AbstractBuilt upon a 5‐year field investigation and a 13‐year satellite data set, this study examines the intricate interrelationships among ecophysiological parameters of Larix gmelinii trees and the prevailing ecosystem, climatic, and environmental factors present in the Indigirka lowlands of northeastern Siberia. It identified spatial‐temporal patterns in July needle nitrogen (N) content as an indicator of N availability from 2009 to 2013. Needle N content (%) revealed distinct yearly values: 2012 (1.31 ± 0.24), 2013 (1.67 ± 0.39), 2009 (1.72 ± 0.15), 2011 (1.84 ± 0.34), and 2010 (2.08 ± 0.25). Positive correlations were found between ecosystem and larch parameters, as well as between September temperature or February/May precipitation and subsequent July ecosystem productivity. Soil moisture (SM) primarily influences N availability across sites, with higher SM levels reducing N availability. However, July air temperature (AT) is the primary driver of interannual N availability changes, with higher temperatures enhancing N availability. Larch photosynthesis is mainly influenced by solar radiation (SR), temperature, N availability, and SM. Annual fluctuations in SR positively impact larch photosynthesis, while high temperatures or wetting events impose limitations on photosynthesis, even if N availability has increased. Consequently, a moderate correlation exists between N availability and photosynthesis across various sites and years (r = 0.422, P = 0.133, n = 14). In summary, this research provides valuable insights into climatic and environmental impacts on larch trees and ecosystems, emphasizing the significance of SM, AT, and SR for predicting future growth patterns of larch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call