Abstract

AbstractThe Arctic loses energy to space and heat is transported northward in the atmosphere and ocean. The largest transport occurs in the atmosphere. The oceanic heat flux is significantly smaller, and the warm water that enters the Arctic Ocean becomes covered by a low‐salinity surface layer, which reduces the heat transfer to the sea surface. This upper layer has two distinct regimes. In most of the deep basins it is due to the input of low‐salinity shelf water, ultimately conditioned by net precipitation and river runoff. The Nansen Basin is different. Here warm Atlantic water is initially in direct contact with and melts sea ice, its upper part being transformed into less dense surface water. The characteristics and depth of this layer are determined as functions of the temperature of the Atlantic water and for different energy losses using a one‐dimensional energy balance model. The amount of transformed Atlantic water is estimated for two different sea ice melt rates and the assumption of a buoyant boundary outflow. To create the upper layer sea ice formed elsewhere has to drift to the Nansen Basin. With reduced ice cover, this ice drift might weaken and the ice could disappear by the end of winter. The surface buoyancy input would disappear, and the upper layer might eventually convect back into the Atlantic water, reducing the formation of less dense Polar water. The created ice‐free areas would release more heat to the atmosphere and affect the atmospheric circulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.