Abstract

Slope failure like in the Hinlopen/Yermak Megaslide is one of the major geohazards in a changing Arctic environment. We analysed hydroacoustic and 2D high-resolution seismic data from the apparently intact continental slope immediately north of the Hinlopen/Yermak Megaslide for signs of past and future instabilities. Our new bathymetry and seismic data show clear evidence for incipient slope instability. Minor slide deposits and an internally-deformed sedimentary layer near the base of the gas hydrate stability zone imply an incomplete failure event, most probably about 30000 years ago, contemporaneous to or shortly after the Hinlopen/Yermak Megaslide. An active gas reservoir at the base of the gas hydrate stability zone demonstrate that over-pressured fluids might have played a key role in the initiation of slope failure at the studied slope, but more importantly also for the giant HYM slope failure. To date, it is not clear, if the studied slope is fully preconditioned to fail completely in future or if it might be slowly deforming and creeping at present. We detected widespread methane seepage on the adjacent shallow shelf areas not sealed by gas hydrates.

Highlights

  • The new data show that the western Nordaustlandet shelf slope resembles a half-bowl

  • During the expedition we observed no flares in water deeper than 300 m, the approximate depth at which the base of gas hydrate stability zone (GHSZ) intersects the seafloor, assuming a mean seabed temperature of 0 °C9,27

  • Submarine slope failures and their mechanisms are controlled by contrasts in gravitational stress and sediment weakness[28]

Read more

Summary

Introduction

The new seismic data image prominent bottom-simulating reflections (BSR) marking the base of the gas hydrate stability zone (GHSZ) at approximately 240 m (0.26 s TWT) below the seafloor at the upper slope (Fig. 2). We image acoustically chaotic bodies in the shallow sub-seafloor at profile kilometres 19 to 24 (Fig. 3), which are most probably built from slide debris of minor, secondary slope failures.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call