Abstract
We study the T-system of type A∞ , also known as the octahedron recurrence/equation, viewed as a 2+1 -dimensional discrete evolution equation. Generalizing earlier work on arctic curves for the Aztec Diamond obtained from solutions of the octahedron recurrence with ‘flat’ initial data, we consider initial data along parallel ‘slanted’ planes perpendicular to an arbitrary admissible direction (r,s,t)∈Z+3 . The corresponding solutions of the T-system are interpreted as partition functions of dimer models on some suitable ‘pinecone’ graphs introduced by Bousquet–Mélou, Propp, and West in 2009. The T-system formulation and some exact solutions in uniform or periodic cases allow us to explore the thermodynamic limit of the corresponding dimer models and to derive exact arctic curves separating the various phases of the system. This direct approach bypasses the standard general theory of dimers using the Kasteleyn matrix approach and uses instead the theory of Analytic Combinatorics in Several Variables, by focusing on a linear system obeyed by the dimer density generating function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.