Abstract
Atmospheric ducting is an anomalous atmospheric structure that affects electromagnetic wave propagation. In the context of global warming, the navigation capacity of the Arctic is increased, and the atmospheric duct can affect communication and navigation in the Arctic. In this study, based on the European Centre for Medium-Range Weather Forecasts reanalysis data (ERA-interim), the climate characteristics and their variations of atmospheric ducts over the Arctic polar region (north of 60° N) from 1989 to 2018 were analyzed, including the occurrence frequency, spatial distribution, thickness and intensity of the atmospheric ducts. The results show that the overall frequency of atmospheric ducts in the Arctic is low, with the average frequency of all types of ducts being less than 10% throughout the year. The frequency of surface ducts is 2~3 times that of elevated ducts. More than 90% of the atmospheric ducts in the Arctic have a trapped layer with a thickness of less than 100 m, and the average thickness of surface ducts is higher than that of the elevated ducts. The intensity of the Arctic surface ducts is stronger than that of the elevated ducts, with an average intensity of 2.1 M (±2.3 M) to 4.5 M (±4.5 M) for the surface ducts and 1.7 M (±2 M) to 2.5 M (±2.9 M) for the elevated ducts. There is a positive correlation between the ducts’ trapped layer thickness and duct intensity. The variation in atmospheric ducts is responsive to the changes in atmospheric circulation and the sea ice extent. This anomalous circulation changes surface wind in the Arctic, which affects the formation and maintenance of the ducts. The trends of ducts in the Arctic Ocean are consistent with those of the Arctic Sea ice extent, while the Arctic continental and coastal ducts show the opposite trend.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.