Abstract

The wintertime Arctic temperature (T; surface–400 hPa) decreased from 1979 to 1997 and increased rapidly from 1998 to 2012, in contrast to the global mean surface air temperature. Here aspects of circulation variability that are associated with these temperature changes are examined using the NCEP–NCAR reanalysis and ERA-Interim products. It is found that the Nordic–Siberia seesaw of meridional winds near 70°N is associated with two-thirds of the variance of the Arctic winter mean T, possibly contributing to the cooling and warming trends. It is suggested here that the seesaw accounts for much of the difference in Arctic amplification between observations and climate models. Growth of sea ice in winter is hindered by southerly winds over the Nordic region (0°–60°E). Through modulation of the wind seesaw, the eastern Atlantic (EA) pattern is found to be significantly associated with Arctic and East Asia winter climate variations. In one phase of the EA pattern, a midlatitude North Atlantic ridge anomaly is associated with a poleward shift of the mean storm track, a weakened eddy-driven jet over Eurasia, and above-normal sea level pressure (SLP) over Siberia, most significantly in the region to the northwest of Lake Baikal. The EA pattern is associated with two-thirds of the variance of winter-average SLP over Siberia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call