Abstract

Precipitation predictions from globai-climate models (GCMs) for the ice-covered Arctic Ocean and the ice sheets of Antarctica are among the most important aspects of the inferred response of the polar areas to climate change. It is generally recognized that the atmospheric hydrologic cycle, which includes precipitation as a key part, is one of the components of the climate system that GCMs do not handle particularly well. The present-day atmospheric-moisture budget poleward of 70° latitude in both hemispheres, as represented by two versions of the NCAR (U.S. National Center for Atmospheric Research) community climate model (CCM1 and CCM2), is compared with observational analyses. The quantities examined on the seasonal and annual timescales are precipitation, evaporation/sublimation and atmospheric poleward moisture transport. The results are discussed in terms of the physiographic and climatic characteristics of both polar regions and how the particular models handle moisture transport: CCM1 uses the positive-moisture fixer and CCM2 the semi- Lagrangian transport. A particularly important test both for models and for observations is the degree to which the independently determined moisture-budget quantities actually balance. Deficiencies of both observations and models are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.