Abstract
Various modes of sea ice motion in the Beaufort Sea are correlated with under-ice noise at 10, 32, and 1000 Hz. Seasonal variations are considered, and a parameterization of ice microfracturing caused by sensible heat flux is included in the correlations. During the summer, the correlations indicate that all frequencies are primarily a response to the ice rushing through the water. During the fall, 10- and 32-Hz noise correlate best with a linear combination of the speed of the ice parcel plus the total rate of change in the shape of the ice parcel. This latter factor indicates noise generation due to the individual ice floes moving past one another as they rearrange into new shapes. The correlations indicate differential motions of other forms (primarily ice convergence) become important in generating lower frequency noise only during winter. As for 1000 Hz during fall and winter, the correlations are low and the results are ambiguous. Several factors are discussed that emphasize our lack of knowledge about higher frequency arctic ambient noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.