Abstract

Aerosol and cloud studies were carried out with a polarimetric bistatic lidar setup at the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) in Andenes (69°N, 16E°), Norway. The measurements were performed from 10 to 23 October 2006 and covered altitudes between 1.5 and 11 km, corresponding to scattering angles between 130 and 170°. The degree of linear polarization, PL, calculated from the experiments was compared with light scattering calculations using Lorenz‐Mie theory for spherical particles, the T‐matrix approach for nonspherical rotationally symmetric particles, and a geometric optics ray‐tracing method. Average PL values between 0.61 and 0.72 were obtained for the background aerosol under cloud‐free conditions. The aerosol results may be qualitatively reproduced by standard aerosol types if a suitable combination of coarse‐ and fine‐mode spherical particles is assumed. The PL values obtained for thin and mildly opaque clouds were in the range from 0.21 to 0.38. These results were not well described by spherical particles, and the results for relatively small prolate and oblate particles studied with the T‐matrix method tended to be slightly higher than the experimental values. Geometric optics calculations for hexagonal column ice particles with surface roughness were able to reproduce the experimental cloud data. This does not rule out contributions from other types of particles, and particle orientation effects may also have influenced the results. We conclude that the experimental results are consistent with earlier in situ studies of cirrus clouds, and the further development and application of the bistatic lidar technique is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call