Abstract
In this paper, a new class of the continuous distributions is established via compounding the arctangent function with a generalized log-logistic class of distributions. Some structural properties of the suggested model such as distribution function, hazard function, quantile function, asymptotics and a useful expansion for the new class are given in a general setting. Two special cases of this new class are considered by employing Weibull and normal distributions as the parent distribution. Further, we derive a survival regression model based on a sub-model with Weibull parent distribution and then estimate the parameters of the proposed regression model making use of Bayesian and frequentist approaches. We consider seven loss functions, namely the squared error, modified squared error, weighted squared error, K-loss, linear exponential, general entropy, and precautionary loss functions for Bayesian discussion. Bayesian numerical results include a Bayes estimator, associated posterior risk, credible and highest posterior density intervals are provided. In order to explore the consistency property of the maximum likelihood estimators, a simulation study is presented via Monte Carlo procedure. The parameters of two sub-models are estimated with maximum likelihood and the usefulness of these sub-models and a proposed survival regression model is examined by means of three real datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.