Abstract

This paper describes the design of a soft decision Viterbi Decoder for orthogonal frequency division multiplexing-based wireless local area networks and evaluates different architectural options by means of their field programmable gate-array (FPGA) implementation. A finite precision analysis has been performed to reduce the data-path widths under the specifications of IEEE 802.11a and Hiperlan/2 standards. Four implementation strategies (register exchange, trace back, trace back with double rate memory read and pointer trace back) for the survivor management unit have been evaluated together with two different normalization methods for the add---compare---select unit. The results of the implementation in FPGA have been given and it is shown that register exchange and pointer trace back architectures with pre-normalization in the add---compare---select unit achieve the best performance. Both architectures can decode 200 Mbps in a Virtex-4 device with lower latency that the conventional trace back one and pointer trace back exhibits the lowest power consumption, these characteristics make them suitable for future multiple-output multiple-input WLAN systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.