Abstract

ABSTRACTShape-memory hydrogels (SMHs) are potential candidate materials for biomedical applications as they can mimic the elastic properties of soft tissue and exhibit shape transformations at body temperature. Here we explored, whether architectured SMHs can be designed by incorporating oligo(ε-caprolactone) (OCL, ${\overline M _n}$ = 4500 g·mol-1, Tm = 54 °C) side chains as switching segment into hydrophilic polymer networks based on N-vinylpyrrolidone as backbone forming component and oligo(ethylene glycol)divinylether (OEGDVE, ${\overline M _n}$ = 250 g·mol-1) as crosslinker. By utilizing NaCl and NaHCO3 as porogene during thermal crosslinking architectured hydrogels having pore diameters between 30 and 500 µm and wall thicknesses ranging from 10 to 190 µm in the swollen state were synthesized. According to the porous microstructure, a macroscopic form stability was obtained when the polymer networks were swollen until equilibrium in water. Material properties were investigated as function of the OCL content, which was varied between 20 and 40 wt%. In compression experiments the architectured hydrogels exhibited strain fixity and strain recovery ratios above 80%. These architectured SMHs might enable biomaterial applications as smart implants with the recovery of bulky structures from compact shapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.