Abstract

Code variants represent alternative implementations of a computation, and are common in high-performance libraries and applications to facilitate selecting the most appropriate implementation for a specific execution context (target architecture and input dataset). Automating code variant selection typically relies on machine learning to construct a model during an offline learning phase that can be quickly queried at runtime once the execution context is known. In this paper, we define a new approach called architecture-adaptive code variant tuning, where the variant selection model is learned on a set of source architectures, and then used to predict variants on a new target architecture without having to repeat the training process. We pose this as a multi-task learning problem, where each source architecture corresponds to a task; we use device features in the construction of the variant selection model. This work explores the effectiveness of multi-task learning and the impact of different strategies for device feature selection. We evaluate our approach on a set of benchmarks and a collection of six NVIDIA GPU architectures from three distinct generations. We achieve performance results that are mostly comparable to the previous approach of tuning for a single GPU architecture without having to repeat the learning phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.