Abstract

Internet-of-Things networks are applied in many areas of people life now. A cornerstone in a issue of a possibility of further distribution and use of these networks is the aspect of security support. However, the features of these networks complicate the use of traditional means and systems of computer protection in them. One of such features is the need to analyze very large volumes of data, heterogeneous by the nature, in real time and with the minimum computing expenses. Taking into account the features of computational capabilities of Internet-of-Things networks the architecture of the system for parallel big data processing based on the data processing technology named as Complex Event Processing and the parallel computing platform Hadoop is offered. The issues directly connected to the architecture of the system and with implementation of its principal components are considered. These components are: data collection component, data storage component, data normalization and analysis component, and data visualization component. An interconnection between components is provided by means of the Hadoop Distributed File System that is a basis for creation of the distributed data storage. The data collection component organizes the distributed data acquisition and their storage in the data storage component. The data normalization and analysis component transforms data to a uniform format and processes them by means of correlation rules. The data visualization component presents data in a graphical form more suitable for further perception by the operator. The results of the experimental evaluation of the system performance confirming a conclusion about its high performance are discussed.

Highlights

  • Internet-of-Things networks are applied in many areas of people life

  • A cornerstone in a issue of a possibility of further distribution and use of these networks is the aspect of security support

  • The features of these networks complicate the use of traditional means and systems of computer protection in them

Read more

Summary

СЕТЕЙ ИНТЕРНЕТА ВЕЩЕЙ

Архитектура системы параллельной обработки больших данных для мониторинга безопасности сетей Интернета вещей. Результаты обработки потоков событий в этой системе хранятся в базе данных MySql. Однако, несмотря на то, что эта система является примером реализации технологии CEP в сети IoT, она не может быть успешно использована для мониторинга безопасности сетей IoT, так как вопросы параллельной обработки больших данных в ней не рассматривались. Система ориентирована на реализацию в среде Hadoop и включает следующие функциональные компоненты: компонент сбора данных, отвечающий за своевременное и достоверное поступление в систему информации о событиях безопасности от источников различных типов; компонент хранилища данных, обеспечивающий надежное хранение данных и оперативную обработку запросов; компонент нормализации и анализа данных, осуществляющий преобразование собираемых данных к единому формату и выполнение над ними основных операций предварительной обработки; компонент визуализации данных, позволяющий в реальном времени проводить визуальный анализ с помощью предварительно разработанных моделей визуализации.

Визуализация данных
Принимающие машины
Master Network
Компонент Hadoop YARN
Объем входной

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.