Abstract

Pectin is an integral component of plant cell walls. It is believed to form an interconnected network structure independent of the cellulose–xyloglucan network structure. Pectin gels are often used as a model for the pectin network structure within the plant cell wall. The middle lamella pectin can be extracted with chelating agents and is believed to be associated through cooperative binding of calcium ions in the so-called egg-box junction zones. Although a great deal is known about the nature of the junction zones in pectin gels, less is known about the long-range structure within calcium-set gels. Two plausible alternative models for long-range order in these gels are a pseudo rubber-like structure and a fibrous network structure. Atomic force microscopy studies of calcium-induced gel precursors, and fragments released from gels, suggest that association leads to a branched fibrous structure within the gels. Enzymatic de-esterification of high methoxy pectin in the presence of calcium ions can induce gelation of the pectin. Thus pectin gel networks may provide a model for a self-assembled network structure within the middle lamella region of the plant cell wall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call