Abstract

Reverse transcription of the HIV-1 RNA genome into double-stranded DNA is a central step in infection1 and a common target of antiretrovirals2. The reaction is catalyzed by viral reverse transcriptase (RT)3,4 that is packaged in an infectious virion along with 2 copies of dimeric viral genomic RNA5 and host tRNALys3, which acts as a primer for initiation of reverse transcription6,7. Upon viral entry, initiation is slow and non-processive compared to elongation8,9. Despite extensive efforts, the structural basis for RT function during initiation has remained a mystery. Here we apply cryo-electron microscopy (cryo-EM) to determine a three-dimensional structure of the HIV-1 RT initiation complex. RT is in an inactive polymerase conformation with open fingers and thumb and with the nucleic acid primer-template complex shifted away from the active site. The primer binding site (PBS) helix formed between tRNALys3 and HIV-1 RNA lies in the cleft of RT and is extended by additional pairing interactions. The 5′ end of the tRNA refolds and stacks on the PBS to create a long helical structure, while the remaining viral RNA forms two helical stems positioned above the RT active site, with a linker that connects these helices to the RNase H region of the PBS. Our results illustrate how RNA structure in the initiation complex alters RT conformation to decrease activity, highlighting a potential target for drug action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.