Abstract
All steps of fatty acid synthesis in fungi are catalyzed by the fatty acid synthase, which forms a 2.6-megadalton alpha6beta6 complex. We have determined the molecular architecture of this multienzyme by fitting the structures of homologous enzymes that catalyze the individual steps of the reaction pathway into a 5 angstrom x-ray crystallographic electron density map. The huge assembly contains two separated reaction chambers, each equipped with three sets of active sites separated by distances up to approximately 130 angstroms, across which acyl carrier protein shuttles substrates during the reaction cycle. Regions of the electron density arising from well-defined structural features outside the catalytic domains separate the two reaction chambers and serve as a matrix in which domains carrying the various active sites are embedded. The structure rationalizes the compartmentalization of fatty acid synthesis, and the spatial arrangement of the active sites has specific implications for our understanding of the reaction cycle mechanism and of the architecture of multienzymes in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.