Abstract

3D bioprinting as a process has enabled the creation of complex structures laden with biological information including cells that is not realizable with conventional manufacturing techniques. Within this new manufacturing process, design strategies and design tools have to be adapted to deliver its full potential. In architecture, parametric design has allowed the creation of new shapes by expressing parameters in an algorithm that defines the relationship between design intent and design response. In this study, the application of this method to the bioprinting of hollow channel grown in silico within a porous scaffold is demonstrated. The final object was printed using a novel bioink formulation based on carboxylated agarose that is extrudable at ambient temperature. The hollow bioprinted object was imaged with X-ray computed tomography to obtain a 3D model for design validation. This proposed workflow “from design to validation” represents a new paradigm for realizing complex structures in 3D bioprinting through in silico optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.