Abstract

Software systems are increasingly required to autonomously adapt their architectural structures and/or behaviors to runtime environmental changes. However, existing architecture-based self-adaptation approaches mostly focus on structural adaptations within a predefined space of architectural alternatives (e.g., switching between two alternative services) while merely considering quality constraints (e.g., reliability and performance). In this paper, we propose a new architecture-based self-adaptation approach, which performs behavioral adaptations with automatically generated alternatives and supports relaxed functional constraints from the perspective of business value. Specifically, we propose a technique to automatically generate behavioral alternatives of a software system from the currently-employed architectural behavioral specification. We employ business value to comprehensively evaluate the behavioral alternatives while capturing the trade-offs among relaxed functional and quality constraints. We also introduce a genetic algorithm-based planning technique to efficiently search for the optimal (sometimes a near-optimal) behavioral alternative that can provide the best business value. The experimental study on an online order processing benchmark has shown promising results that the proposed approach can improve adaptation flexibility and business value with acceptable performance overhead.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.