Abstract

Recent research has deepened our understanding of the ancient, conserved chemosensory array that detects small molecule attractants and repellents, and directs the chemotaxis of bacterial and archaeal cells towards an optimal chemical environment. Here we review advances towards a molecular description of the ultrastable lattice architecture and ultrasensitive signal transduction mechanism of the chemosensory array, as well as controversies and challenges requiring further research. Ultimately, a full molecular understanding of array structure and on-off switching will foster (i) the design of novel therapies that block pathogenic wound seeking and infection, (ii) the development of highly specific, sensitive, stable biosensors, and (iii) the elucidation of general functional principles shared by receptor patches in all branches of life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call