Abstract

AbstractTo investigate the effects of surface property of mesoporous supports on the lipase immobilization and the performance of immobilized lipase, the mesoporous molecular sieve SBA‐15 is functionalized with three organic moieties, dimethyl (DM), diisopropyl (DIP), and diisobutyl (DIB), respectively, by post‐synthesis grafting and one‐pot synthesis methods. Porcine pancreas lipase (PPL) is immobilized on SBA‐15 supports through hydrogen bonding and hydrophobic interaction. The hydrophobic adsorption involves no active sites of PPL, and neither hyper‐activation nor total inactivation occurs. The study on the intrinsic stability of PPL, including thermal stability, pH stability, and storage stability, indicates that the entrapment in mesoporous supports, and especially in organic‐functionalized supports, makes PPL more resistant to temperature increment but more sensitive to pH change. The reusability investigation shows that the organic modification of mesoporous surface inhibits the enzyme leaching to some extent, resulting in a better operational stability. © 2009 American Institute of Chemical Engineers AIChE J, 2010

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.