Abstract
Fault inversion may lead to significant obliteration of earlier tectonic structures, thus preventing the straightforward interpretation of the complete kinematics and deformation history of faults.We adopt a multidisciplinary approach to: (1) reconstruct the tectonic evolution through space and in time of the extensionally-inverted Mt. Tancia Thrust (Central Apennines, Italy); (2) understand the deformation mechanisms and the transition and reactivation of compressional structures during negative tectonic inversion; and (3) constrain the origin of fluids involved during tectonic processes.To this end, we combined: (1) detailed geological mapping and multiscale structural analysis; (2) illite-smectite paleothermal indicators; (3) C, O, and clumped isotopes on calcite mineralizations and (4) K–Ar dating of authigenic and/or syn-kinematic illite from the Mt. Tancia Thrust fault rocks. We show that shortening occurred between ~9 and ~7 Ma, during possibly multiple events of fluid overpressure and shear rupturing involving fluids entrapped over long term within the host rocks. Post-compressive tectonic inversion occurred at ~3 Ma under fluid pressure fluctuations during shear events with an input of meteoric-derived fluids. Tectonic inversion is spatially confined within the first few metres below the thrust surface in a volume dominated by the partial overprinting, folding, transposition, and re-utilization of the earlier compressional fabric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.