Abstract

An investigation of a suite of RSA processors using different exponentiation and modular arithmetic algorithms is the main theme of this paper. The execution time and the amount of hardware required of different algorithms used to implement the RSA processor are compared. The modular algorithms examined in this paper are classical modular algorithm, Barrett's modular algorithm, Hensel's odd division and Montgomery's modular algorithm. The exponentiation algorithms implemented are the left-to-right binary method, the right-to-left binary method, the Chinese remainder theorem. This work finds that the fast RSA processor is the one using the Chinese remainder theorem with right to left scan for exponentiation operations and Barrett's algorithm for modular arithmetic operations. The RSA processor using least amount of hardware is the one using the left-o-right binary method for exponentiation operations and Montgomery's algorithm for modular operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.