Abstract

Parallel computing on networks of workstations is fast becoming a cost-effective high-performance computing alternative to MPPs. Such a computing environment typically consists of processing nodes interconnected through a switch-based irregular network. Many of the problems that were solved for regular networks have to be solved anew for these systems. One such problem is that of efficient multicast communication. In this paper, we propose two broad categories of schemes for efficient multicasting in such irregular networks: network interface-based (NI-based) and switch-based. The NI-based multicasting schemes use the network interface of intermediate destinations for absorbing and retransmitting messages to other destinations in the multicast tree. In contrast, the switch-based multicasting schemes use hardware support for packet replication at the switches of the network and a concept known as multidestination routing to convey a multicast message from one source to multiple destinations. We first present alternative schemes for efficient multipacket forwarding at the NI and derive an optimal k-binomial multicast tree for multipacket NI-based multicast. We then propose two switch-based multicasting schemes that differ in the power of the encoding scheme and the complexity of the decoding logic at the switches. These multicasting schemes use path-based multidestination worms that can cover all nodes connected to switches along a valid unicast path and tree-based multidestination worms that can cover entire destination sets in a single phase using one worm, respectively. For each scheme, we describe the associated header encoding and decoding operation, the method for deriving multidestination worms that cover arbitrary multicast destination sets, and the multicasting scheme using the derived multidestination worms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.