Abstract
Because of simple synthetic strategies, randomly functionalized amphiphilic polymers have gained much attention. Recent studies have demonstrated that such polymers can be reorganized into different nanostructures, such as spheres, cylinders, vesicles, etc., similar to amphiphilic block copolymers. Our study investigated the self-assembly of randomly functionalized hyperbranched polymers (HBP) and their linear analogues (LP) in solution and at the liquid crystal-water (LC-water) interfaces. Regardless of their architecture, the designed amphiphiles self-assembled into spherical nanoaggregates in solution and mediated the ordering transitions of LC molecules at the LC-water interface. However, the amount of amphiphiles required for LP was 10 times lower than that required for HBP amphiphiles to mediate the same ordering transition of LC molecules. Further, of the two compositionally similar amphiphiles (linear and branched), only the linear architecture responds to biorecognition events. The architectural effect can be attributed to both of these differences mentioned above.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.