Abstract

Abstract Civil Aviation Authorities are elaborating a new regulatory framework for the safe operation of Unmanned Aircraft Systems (UAS). Current proposals are based on the analysis of the specific risks of the operation as well as on the definition of some risk mitigation measures. In order to achieve the target level of safety, we propose increasing the level of automation by providing the on-board system with Automated Contingency Management functions. The aim of the resulting Safe Mission Manager System is to autonomously adapt to contingency events while still achieving mission objectives through the degradation of mission performance. In this paper, we discuss some of the architectural issues in designing this system. The resulting architecture makes a conceptual differentiation between event monitoring, decision-making on a policy for dealing with contingencies and the execution of the corresponding policy. We also discuss how to allocate the different Safe Mission Manager components to a partitioned, Integrated Modular Avionics architecture. Finally, determinism and predictability are key aspects in contingency management due to their overall impact on safety. For this reason, we model and verify the correctness of a contingency management policy using formal methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.