Abstract

Hintonia latiflora is a rare ecologically and economically important species from the Tropical Deciduous Forest of the Balsas Basin, Mexico, whose bark is traded as medicinal. Debarking practices have modified the shape of plants, their architecture and morphometry; but it is unknown if some topographic and edaphic factors may also influence in these attributes. Here we propose that the ecological conditions of this species distribution and harvesting areas, may determine the morphometric characteristics and the individuals variation in their architecture. To test this hypothesis we assessed the relationship of topographic and edaphic factors on the morphological characteristics of saplings (n = 143) and adults (n = 117), in eight harvesting areas of H. latiflora . The harvesting areas, with a surface of 0.6 ha, were selected randomly with the support of participatory mapping elaborated by gatherers of the study site. Data were analyzed using principal components (PCA) and canonical correspondence (CCA) analyses. The first three PC explained 92.1 % of the morphological variation; height, basal diameter, and coverage, explained morphometric differences in both, saplings and adults, in all eight harvesting zones. The terrain slope, slope orientation, soil depth and stoniness, were ecological factors statistically related with morphometric differences. A lower terrain slope, little stoniness, soil depth, slope orientation E-W in saplings (azimuth 90˚-270˚) and N-S in adults (azimuth 0˚-180˚) were the factors associated to height, number of basal branches, basal diameter and coverage of H. latiflora . Areas with higher harvesting intensity were composed by monopodic trees and some reiterated basitone individuals; the adults of these areas also had more fruits. At these sites, plants of H.latiflora were more abundant and produced more bark, but the high-intensity of harvesting, changes plant architecture, forming shrubby, multi-stemmed individuals, that originally were mesotone trees. Areas with lower harvesting intensity were characterized by steep slopes, shallow and rocky soils, and were dominated by basitone trees of smaller size, thin and scarce in the area. These sites are the least recommended for harvesting, because they produce less bark per tree, and serve to preserve the species at the site. Based on these results, we can develop restoration programs in areas affected by commercial harvesting, establish forestry plantations in key sites to ensure the establishment and development of individuals with desirable characteristics for bark harvesting and contribute to in situ conservation of H. latiflora in the Alto Balsas Basin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call