Abstract
Historically, the power distribution grid was a passive system with limited control capabilities. Due to its increasing digitalization, this paradigm has shifted: the passive architecture of the power system itself, which includes cables, lines, and transformers, is extended by a communication infrastructure to become an active distribution grid. This transformation to an active system results from control capabilities that combine the communication and the physical components of the grid. It aims at optimizing, securing, enhancing, or facilitating the power system operation. The combination of power system, communication, and control capabilities is also referred to as a “smart grid”. A multitude of different architectures exist to realize such integrated systems. They are often labeled with descriptive terms such as “distributed,” “decentralized,” “local,” or “central." However, the actual meaning of these terms varies considerably within the research community.This paper illustrates the conflicting uses of prominent classification terms for the description of smart grid architectures. One source of this inconsistency is that the development of such interconnected systems is not only in the hands of classic power engineering but requires input from neighboring research disciplines such as control theory and automation, information and telecommunication technology, and electronics. This impedes a clear classification of smart grid solutions. Furthermore, this paper proposes a set of well-defined operation architectures specialized for use in power systems. Based on these architectures, this paper defines clear classifiers for the assessment of smart grid solutions. This allows the structural classification and comparison between different smart grid solutions and promotes a mutual understanding between the research disciplines. This paper presents revised parts of Chapters 4.2 and 5.2 of the dissertation of Drayer (Resilient Operation of Distribution Grids with Distributed-Hierarchical Architecture. Energy Management and Power System Operation, vol. 6, 2018).
Highlights
Introduction and motivationIn the last decade, research and industry have proposed many ways to realize solutions for the “smart grid.” This is due to the rising requirement to integrate more distributed energy resources (DER) into the grid as well as increasing possibilities in information and communications technology (ICT)
This paper proposes a set of well-defined operation architectures specialized for use in power systems
These definitions are further used as a comprehensive way to compare different smart grid solutions on a structural basis
Summary
Introduction and motivationIn the last decade, research and industry have proposed many ways to realize solutions for the “smart grid.” This is due to the rising requirement to integrate more distributed energy resources (DER) into the grid as well as increasing possibilities in information and communications technology (ICT). Research and industry have proposed many ways to realize solutions for the “smart grid.”. This is due to the rising requirement to integrate more distributed energy resources (DER) into the grid as well as increasing possibilities in information and communications technology (ICT). Due to the interdisciplinary nature of power system engineering, labelling terms are usually chosen according to the personal scientific background. If these terms are the basis for comparative analysis, the work becomes highly inaccurate
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.