Abstract

Modern cyber-physical systems interact closely with continuous physical processes like kinematic movement. Software component frameworks do not provide an explicit way to represent or reason about these processes. Meanwhile, hybrid program models have been successful in proving critical properties of discrete-continuous systems. These programs deal with diverse aspects of a cyber-physical system such as controller decisions, component communication protocols, and mechanical dynamics, requiring several programs to address the variation. However, currently these aspects are often intertwined in mostly monolithic hybrid programs, which are difficult to understand, change, and organize. These issues can be addressed by component-based engineering, making hybrid modeling more practical. This paper lays the foundation for using architectural models to provide component-based benefits to developing hybrid programs. We build formal architectural abstractions of hybrid programs and formulas, enabling analysis of hybrid programs at the component level, reusing parts of hybrid programs, and automatic transformation from views into hybrid programs and formulas. Our approach is evaluated in the context of a robotic collision avoidance case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.