Abstract

Abstract This paper proposes a methodology for architecting microstructures with extremal stiffness, yield, and buckling strength using topology optimisation. The optimised microstructures reveal an interesting transition from simple lattice-like structures for yield-dominated situations to hierarchical lattice structures for buckling-dominated situations. The transition from simple to hierarchical is governed by the relative yield strength of the constituent base material as well as the volume fraction. The overall performances of the optimised microstructures indicate that maximum strength is determined by the buckling strength at low-volume fractions and yield strength at higher-volume fractions, regardless of the base material’s relative yield strength. The non-normalised properties of the optimised microstructures show that higher base material Young’s modulus leads to both higher Young’s modulus and strength of the architected microstructures. Furthermore, the polynomial order of the maximum strength lines with respect to mass density obtained from the optimised microstructures reduces as base material relative yield strength decreases, reducing from 2.3 for buckling-dominated thermoplastic polyurethane to 1 for yield-dominated steel microstructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.