Abstract

Carbonaceous materials are considered strong candidates as anode materials for sodium‐ion batteries (SIBs), which are expected to play an indispensable role in the carbon‐neutral era. Herein, novel braided porous carbon fibres (BPCFs) are prepared using the chemical vapour deposition (CVD) method. The BPCFs possess interwoven porous structures and abundant vacancies. The growth mechanism of the BPCFs can be attributed to the polycrystalline transformation of the nanoporous copper catalyst in the early stage of CVD process. Density functional theory calculations suggest that the Na+ adsorption energies of the mono‐vacancy edges of the BPCFs (−1.22 and −1.09 eV) are lower than that of an ideal graphene layer (−0.68 eV), clarifying in detail the adsorption‐dominated sodium storage mechanism. Hence, the BPCFs as an anode material present an outstanding discharge capacity of 401 mAh g−1 at 0.1 A g−1 after 500 cycles. Remarkably, this BPCFs anode, under high‐mass‐loading of 5 mg cm−2, shows excellent long‐term cycling ability with a reversible capacity of 201 mAh g−1 at 10 A g−1 over 1000 cycles. This study provided a novel strategy for the development of high‐performance carbonaceous materials for SIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.