Abstract
Inspired by natural materials like bamboo and the dentin-enamel junction of tooth, the concept of architected multi-directional functionally graded cellular materials (FGCMs) is introduced. These architected porous materials are made by assembling porous unit cells of dissimilar densities and cell topologies. To evaluate the potential of multi-directional FGCMs for improving the performance of lightweight structural elements, the mechanical properties of functionally graded cellular (FGC) plates are analyzed. For the numerical analyses, standard mechanics homogenization is used to predict the mechanical properties of cells with arbitrary superellipse voids. The homogenized effective properties along with finite element method and shear deformation theory are exploited to predict the mechanical responses of plates made of multi-directional FGCMs. Numerical results reveal substantial improvement in structural responses when FGCMs are appropriately used; e.g. 56% improvement in bending stiffness is found in an FGC rectangular plate compared to a cellular plate with the same weight and with uniform distribution of constitutive cells. Numerical results show that cell variation through the thickness of FGC plates is more effective on the structural responses than variation through the length or width. Finally, multi-objective optimization is implemented to show the maximum improvement achievable via architecture variation within FGC structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.