Abstract
Batteries assembled with lithium metal anodes and high-capacity cathodes—including air, sulfur, and lithium-rich transition metal oxides—have higher energy density than conventional Li-ion counterparts. Unfortunately, the lifetime of lithium metal cells is typically short, owing to the formation of dendrites on charging, which eventually shorts the cells. Short cycle life is also observed when lithium deposits with a “mossy” morphology; the high surface area of mossy deposits increases the rate of electrolyte degradation, eventually drying out the cells. Here we show that a lithium-ion-conducting, architected macroporous polyelectrolyte (AMP-1) serves as a long-lasting host for uniform and dense lithium–metal electrodeposits. High Coulombic efficiencies indicate the low occurrence of parasitic reactions with the electrolyte. Galvanostatic discharge experiments indicate that AMP-1 suppresses dendrite formation, extending over 2-fold the short-circuit time at high current density. Our success opens new dire...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.