Abstract

BackgroundV-ATPases constitute a ubiquitous family of heteromultimeric, proton translocating proteins. According to their localization in a multitude of eukaryotic membranes, they energize many different transport processes. Since their malfunction is correlated with various diseases in humans, the elucidation of the properties of this enzyme for the development of selective inhibitors and drugs is one of the challenges in V-ATPase research.ResultsArchazolid A and B, two recently discovered cytotoxic macrolactones produced by the myxobacterium Archangium gephyra, and apicularen A and B, two novel benzolactone enamides produced by different species of the myxobacterium Chondromyces, exerted a similar inhibitory efficacy on a wide range of mammalian cell lines as the well established plecomacrolidic type V-ATPase inhibitors concanamycin and bafilomycin. Like the plecomacrolides both new macrolides also prevented the lysosomal acidification in cells and inhibited the V-ATPase purified from the midgut of the tobacco hornworm, Manduca sexta, with IC50 values of 20–60 nM. However, they did not influence the activity of mitochondrial F-ATPase or that of the Na+/K+-ATPase. To define the binding sites of these new inhibitors we used a semi-synthetic radioactively labelled derivative of concanamycin which exclusively binds to the membrane Vo subunit c. Whereas archazolid A prevented, like the plecomacrolides concanamycin A, bafilomycin A1 and B1, labelling of subunit c by the radioactive I-concanolide A, the benzolactone enamide apicularen A did not compete with the plecomacrolide derivative.ConclusionThe myxobacterial antibiotics archazolid and apicularen are highly efficient and specific novel inhibitors of V-ATPases. While archazolid at least partly shares a common binding site with the plecomacrolides bafilomycin and concanamycin, apicularen adheres to an independent binding site.

Highlights

  • V-ATPases constitute a ubiquitous family of heteromultimeric, proton translocating proteins

  • In the present report we introduce two types of antibiotics produced by myxobacteria, apicularens, new benzolactone enamides [15,16] and archazolids, a novel class of macrolactones [17] which both represent highly potent and specific V-ATPase inhibitors, with different modes of action and different binding sites

  • For most of them IC50 values were in the nanomolar range, comparable with the IC50 values for concanamycin A and bafilomycin A1

Read more

Summary

Introduction

V-ATPases constitute a ubiquitous family of heteromultimeric, proton translocating proteins According to their localization in a multitude of eukaryotic membranes, they energize many different transport processes. Since their malfunction is correlated with various diseases in humans, the elucidation of the properties of this enzyme for the development of selective inhibitors and drugs is one of the challenges in V-ATPase research. Vacuolar-type ATPases (V-ATPases) are ubiquitous proton pumps in the endomembrane system of all eukaryotic cells and in plasma membranes of many animal cells where they energize transport processes across the membrane or regulate the pH of corresponding compartments [1] They are heteromultimeric enzymes consisting of a membrane bound, proton translocating Vo complex and a catalytic V1 complex which is oriented towards the cytosol. In the present report we introduce two types of antibiotics produced by myxobacteria, apicularens, new benzolactone enamides [15,16] and archazolids, a novel class of macrolactones [17] which both represent highly potent and specific V-ATPase inhibitors, with different modes of action and different binding sites

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call