Abstract

Despite the pivotal role of archaea in methane production in landfills, the identity, ecology, and functional diversity of these microorganisms and their link to environmental factors remain largely unknown. We collected 11 landfill leachate samples from six geographically distinct landfills of different ages in China and analyzed the archaeal community by bar-coded 454 pyrosequencing. We retrieved 121,797 sequences from a total of 167,583 sequences (average length of 464 bp). The archaeal community was geographically structured, and nonabundant taxa primarily contributed to the observed dissimilarities. Canonical correlation analysis (CCA) suggested that the total phosphorous (TP), nitrate, and conductivity are important drivers for shaping the archaeal community. The hydrogenotrophic methanogens Methanomicrobiales and Methanobacteriales greatly dominated 9 of 11 samples, ranging from 83.7 to 99.5 %. These methanogens also dominated the remaining two samples, accounting for 70.3 and 58.8 %, respectively. Interestingly, for all of the studied Chinese landfills, 16S rRNA analysis indicated the predominance of hydrogenotrophic methanogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.