Abstract

The archaeal composition of permafrost samples taken during the drilling of frozen marine sediments in the area of the Barentsburg coal mine on the east coast of Grønfjord Bay of Western Spitsbergen has been studied. This study is based on an analysis of the V4 region of the 16S rRNA gene, carried out using next-generation sequencing. The general phyla of the Archaea domain are Euryarchaeota, Bathyarchaeota, Thaumarchaeota, and Asgardarchaea. As a result of a phylogenetic analysis of the dominant operational taxonomic units, representatives of methanogenic and methane- and ammonium-oxidizing archaea, as well as heterotrophic archaea, are found. The methanogenic archaea of Euryarchaeota phylum, Methanobacteria class, are found in permafrost with controversial genesis, while the methane-oxidizing archaea of Methanomicrobia class Methanosarcinales order are found in the marine permafrost at cape Finneset: the ANME-2a, -2b group in layers of 8.6 and 11.7 m and the ANME-2d group (Candidatus Methanoperedens) in a layer of 6.5 m. Ammonium-oxidizing archaea of phylum Thaumarchaeota is present in all types of permafrost, while the order of Nitrososphaerales is found in permafrost with controversial genesis and the order Nitrosopumilales is in permafrost with marine and controversial genesis. Representatives of phylum Bathyarchaeota are found stratigraphically in the most ancient samples under study. Asgardarchaeota superfylum is excluded in the layers of permafrost with marine genesis and is represented by the phyla Lokiarchaeota, Thorarchaeota, and an unclassified group belonging to this superphylum. The presence of methane, ethylene, and ethane in the permafrost of the first sea terrace of Cape Finnemet at a depth of 11.7 m, as well as the composition of the archaeal community, give us reason to assume that, before freezing, microbiological processes of anaerobic methane oxidation took place in it, probably received from Tertiary rocks. The results of both this and previous works present the Spitsberen permafrost as a rich archive of genetic information of little-studied prokaryotic groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call