Abstract

The objective of this paper is to provide a method of optimizing areas of the members as well as the shape of both two-hinged and fixed arches. The design process includes satisfaction of combined stress constraints under the assumption that the arch ribs can be approximated by a finite number of straight members. In order to reduce the number of detailed finite element analyses, the Force Approximization Method is used. A finite element analysis of the initial structure is performed and the gradients of the member end forces (axial, bending moment) are calculated with respect to the areas and nodal coordinates. The gradients are used to form an approximate structural analysis based on first order Taylor series expansions of the member end forces. Using move limits, a numerical optimizer minimizes the volume of the arch with information from the approximate structural analysis. Numerical examples are presented to demonstrate the efficiency and reliablity of the proposed method for shape optimization. It is shown that the number of finite element analysis is minimal and the procedure provides a highly efficient method of arch shape optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.