Abstract

Critical and rare earth elements are in high demand for their increasing incorporation in modern technological devices for applications in the military, industrial, commercial, and consumer sectors. Round Top Mountain, a rhyolite laccolith in Sierra Blanca, west Texas, U.S.A. is a unique mineral deposit that offers opportunity for development of rare earth elements, especially the heavy rare earths, as well as associated critical elements. The main objective here is to evaluate the distances between accessory minerals of potential economic value (yttrofluorite, cryolite, uraninite, thorite, cassiterite, and columbite), and to major (potassium feldspar, albite, and quartz) and minor minerals (annite mi-ca, magnetite, and zircon). In this study we explore the proximity and clustering of these minor and accessory minerals, at the mi-cron-to-millimeter scale, from mineral maps constructed in a previous application of ArcGISTM tools to electron probe microanal-ysis (EPMA) element maps. Our goal is to determine whether specific minerals cluster spatially and, if so, at what distances. We noted that the high-value target yttrofluorite grains often neighbor potassium feldspar and quartz grains, but less commonly magnetite and mica grains. With regard to cluster analysis, most minor and accessory minerals were found to group together at small scales (low micrometer) and were dis-persed or random at larger (up to 1 mm) distances.

Highlights

  • In this study, we examine minor and accessory minerals from a potentially economically valuable deposit of heavy rare earth elements (HREEs) and other critical elements [1]-[10]

  • In this study we explore the proximity and clustering of these minor and accessory minerals, at the micron-to-millimeter scale, from mineral maps constructed in a previous application of ArcGISTM tools to electron probe microanalysis (EPMA) element maps

  • Because virtually all of the yttrium + HREEs (YHREEs) at Round Top are hosted in YF [3], it is the target mineral for REE extraction

Read more

Summary

Introduction

We examine minor and accessory minerals from a potentially economically valuable deposit of heavy rare earth elements (HREEs) and other critical elements [1]-[10]. The major elemental composition of the rhyolite comprises Si, O, K, Al, and Na. The major elemental composition of the rhyolite comprises Si, O, K, Al, and Na This unique deposit underwent chemical alteration by a late-stage fluorine vapor phase that enriched it in HREEs and other incompatible elements [2] [6]. The laccolith exhibits exceptionally homogeneous mineralization [7], with rare earth element (REE) concentration over 500 ppm, of which the desirable yttrium + HREEs (YHREEs) comprise approximately 72%, making it of global significance [3] [11]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.