Abstract
The plasma flow of a nontransferred plasma torch used for thermal plasma processings is produced by the arc-gas interactions between a cathode tip and an anode nozzle and expands as a jet through the nozzle. In this work, numerically calculated images of the are plasma characteristics are found over the entire plasma region, including both an arc-gas interacting region inside the torch and a jet expanding region outside the torch. A numerical model used assumes a local thermodynamic equilibrium (LTE) with near-electrode phenomena and compressible flow effects. The computational system is described by a two-dimensional (2-D) axisymmetric model which is solved for plasma temperature and velocity by a control volume approach with the modified SIMPLER algorithm in a real torch geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.