Abstract

Recently, one main trend in the development of high-power gas circuit breakers (GCBs) has been to review and reapply the current interruption principle of self-blast GCBs because GCBs need to be compact in size and interrupt high current with low driving energy. A simulation algorithm was designed to analyze arc gas flow during the current interruption in an self-blast GCB. One model of self-blast GCBs was chosen as the test subject in order to validate the results of the algorithm. This paper shows that the simulation algorithm calculated and visualized the entire arc quenching process, and nozzle ablation has been taken into account. Pressure rise in the cylinder presented a great difference between considering the arc radiation effect and not. Both arc temperatures have a range of 13 000–28 000 K, except near the current zero point. Based on the development of the algorithm, the other two results were proposed to clearly validate precision in calculation. One had the results calculated by varying the radius of the nozzle throat in the self-blast GCB and another calculated arc gas flow of a hybrid puffer GCB with piston compression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.