Abstract

Deep neural networks have demonstrated their capability to learn control policies for a variety of tasks. However, these neural network-based policies have been shown to be susceptible to exploitation by adversarial agents. Therefore, there is a need to develop techniques to learn control policies that are robust against adversaries. We introduce Adversarially Robust Control (ARC), which trains the protagonist policy and the adversarial policy end-to-end on the same loss. The aim of the protagonist is to maximise this loss, whilst the adversary is attempting to minimise it. We demonstrate the proposed ARC training in a highway driving scenario, where the protagonist controls the follower vehicle whilst the adversary controls the lead vehicle. By training the protagonist against an ensemble of adversaries, it learns a significantly more robust control policy, which generalises to a variety of adversarial strategies. The approach is shown to reduce the amount of collisions against new adversaries by up to 90.25%, compared to the original policy. Moreover, by utilising an auxiliary distillation loss, we show that the fine-tuned control policy shows no drop in performance across its original training distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.