Abstract

AbstractAcid rain (AR), which occurs frequently in southern China, negatively affects the growth of subtropical tree species. Arbuscular mycorrhizal fungi (AMF) mitigate the detrimental effects induced by AR. However, the mechanisms by which AMF protect Zelkova serrata, an economically important tree species in southern China, from AR stress remain unclear. We conducted a greenhouse experiment in which Z. serrata plants were inoculated with AMF species Rhizophagus intraradices and Diversispora versiformis, either alone or as a mixed culture, or with a sterilized inoculum (negative control). The plants were subjected to three levels of simulated sulfuric AR and nitric AR (pH 2.5, 4.0 and 5.6) to examine any interactive effects on growth, photosynthetic capabilities, antioxidant enzymes, osmotic adjustment and soil enzymes. AR significantly decreased dry weight, chlorophyll content, net photosynthetic rate and soluble protein (SP) of non-mycorrhizal plants. Mycorrhizal inoculation, especially a combination of R. intraradices and D. versiformis, notably improved dry weight, photosynthetic capabilities, catalase, peroxidase, superoxide dismutase, SP and root acid phosphatase activity of Z. serrata under harsh AR stress. Moreover, the benefits from AMF symbionts depended on the identity of AM fungal species and the gradient of AR stress. Our results indicate that AM fungi protect Z. serrata against AR stress by synchronously activating photosynthetic ability, antioxidant enzymes and osmolyte accumulation. These findings suggest that a combination of R. intraradices and D. versiformis may be a preferable choice for culturing Z. serrata in southern China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.