Abstract

Understanding the influence of arbuscular mycorrhizal (AM) fungi on the expressions of the dominant plant-related genes under heavy metal (HM) stress is important for developing strategies to reclaim polluted sites. In this study, we cloned full-length cDNAs of phytochelatin synthase gene (PCS1) and Actin of Sophora viciifolia Hance., a predominant plant in Qiandongshan lead and zinc mine, by rapid amplification of cDNA ends. Consequently, we studied the response of SvPCS1 to Funneliformis mosseae inoculation under lead stress (0, 50, and 200 μM Pb(NO3)2) at different durations (1, 3, and 7 days) using quantitative reverse-transcription polymerase chain-reaction (qRT-PCR) technique. The Pb concentrations and chlorophyll fluorescence parameters were also measured to assay Pb toxicity to Sophora viciifolia. We found that Pb concentrations in roots increased with increasing Pb application and the durations; the F v /F m , F v /F o , qP, and Y(II) decreased; NPQ rose with increasing Pb concentrations; mycorrhizal symbiosis alleviated the Pb toxicity to plants; and SvPCS1 was constitutively expressed in the roots. It was also found that F. mosseae inoculation could promote the expression of SvPCS1 with the concentration ≤ 200 μM at the exposure time shorter than 7 days.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.