Abstract

Arbuscular mycorrhizal fungi (AMF) promote plants to absorb more water and nutrients and improve their stress resistance. As the main signal transducer, the mitogen-activated protein kinase (MAPK) cascade plays a vital role in drought stress. However, how the MAPK family genes of mycorrhizal plants respond to stress is still not clear. Our study analyzed physiological indexes and expression profiles of MAPK family genes of Populus simonii×P. nigra under two inoculation treatments (inoculated with or without Rhizophagus irregularis) and two water conditions (well-watered or drought stress). The results showed that the stronger photosynthesis of mycorrhizal plants may be mediated by MAPK genes induced by AMF. Mycorrhizal plants showed lower oxidative damage and drought sensitivity. Mycorrhiza downregulated the expression of PsnMAPK7-2, PsnMAPK16-1, PsnMAPK19-2, and PsnMAPK20-2 which negatively regulate drought tolerance and induced specific PsnMAPKs in roots which activate transcription factors to regulate downstream gene expressions, enhancing drought tolerance. This is the first time to identify part of the MAPK gene family of P. simonii×P. nigra at the genome level and study MAPK genes in mycorrhizal forest trees. This is helpful to understand the function of the MAPK gene family in response to drought of mycorrhizal plants and lays a foundation for afforestation by using mycorrhizal saplings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.