Abstract

Arsenic (As) pollution of soil reduces the growth and reproductive potential of plants. Silicon (Si) and arbuscular mycorrhizal (AM) fungi play significant roles in alleviating adverse effects of As stress. However, studies are scant regarding alleviative effects of Si in pigeonpea (Cajanus cajan L. Millsp.) because legumes are considered low Si-accumulators. We investigated the individual as well as synergistic potential of Si with two AM species (M1-Claroideoglomus etunicatum and M2-Rhizoglomus intraradices) in modulating soil properties, thereby improving growth and productivity of pigeonpea genotype Pusa 2001 grown in AsV and AsIII challenged soils. Both As species hampered the establishment of AM symbiosis, thus, reducing nutrient uptake, growth and yield, with AsIII more toxic than AsV. Exogenously applied Si and AM species enhanced soil glomalin and phosphatases activity, hence decreased metal bioavailability in soil, increased plant nutrient acquisition, biomass and chlorophylls; with maximum benefits provided by M2, closely followed by Si and least by M1. These amendments boosted the activities of starch hydrolytic enzymes (α-, β-amylase, starch phosphorylase) in plants, along with a simultaneous increase in total soluble sugars (TSS). This enhanced sugar accumulation directly led to improved reproductive attributes, more efficiently by M2 and Si than by M1. Moreover, there was a substantial increase in proline biosynthesis due to significantly enhanced activities of its biosynthetic enzymes. Additionally, combined applications of Si and AM, especially +Si+M2, complemented each other where AM enhanced Si uptake, while Si induced mycorrhization, suggesting their mutual and beneficial roles in ameliorating metal(loid) toxicity and achieving sustainability in pigeonpea production under As stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call