Abstract
In this article a new high order accurate cell-centered Arbitrary-Lagrangian–Eulerian (ALE) Godunov-type finite volume method with time-accurate local time stepping (LTS) is presented. The method is by construction locally and globally conservative. The scheme is based on a one-step predictor–corrector methodology in space–time and uses three main building blocks: First, a high order piecewise polynomial WENO reconstruction, to obtain a high order data representation in space from the known cell averages of the underlying finite volume scheme. Second, a high order space–time Galerkin predictor step based on a weak formulation of the governing PDE on moving control volumes. Third, a high order one-step finite volume scheme, based directly on the integral formulation of the conservation law in space–time. The algorithm being entirely based on space–time control volumes naturally allows for hanging nodes also in time, hence in this framework the implementation of a consistent and conservative time-accurate LTS becomes very natural and simple. The method is validated on some classical shock tube problems for the Euler equations of compressible gas dynamics and the magnetohydrodynamics equations (MHD). The performance of the new scheme is compared with a classical high order ALE finite volume scheme based on global time stepping. To the knowledge of the author, this is the first high order accurate Lagrangian finite volume method ever presented together with a conservative and time-accurate local time stepping feature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.