Abstract

We characterize the best achievable performance of lossy compression algorithms operating on arbitrary random sources, and with respect to general distortion measures. Direct and converse coding theorems are given for variable-rate codes operating at a fixed distortion level, emphasizing: (a) nonasymptotic results, (b) optimal or near-optimal redundancy bounds, and (c) results with probability one. This development is based in part on the observation that there is a precise correspondence between compression algorithms and probability measures on the reproduction alphabet. This is analogous to the Kraft inequality in lossless data compression. In the case of stationary ergodic sources our results reduce to the classical coding theorems. As an application of these general results, we examine the performance of codes based on mixture codebooks for discrete memoryless sources. A mixture codebook (or Bayesian codebook) is a random codebook generated from a mixture over some class of reproduction distributions. We demonstrate the existence of universal mixture codebooks, and show that it is possible to universally encode memoryless sources with redundancy of approximately (d/2) log n bits, where d is the dimension of the simplex of probability distributions on the reproduction alphabet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.