Abstract
This work considers the interaction of two dielectric particles of arbitrary shape immersed into a solvent containing a dissociated salt and assuming that the linearized Poisson-Boltzmann equation holds. We establish a new general spherical re-expansion result which relies neither on the conventional condition that particle radii are small with respect to the characteristic separating distance between particles nor on any symmetry assumption. This is instrumental in calculating suitable expansion coefficients for the electrostatic potential inside and outside the objects and in constructing small-parameter asymptotic expansions for the potential, the total electrostatic energy, and forces in ascending order of Debye screening. This generalizes a recent result for the case of dielectric spheres to particles of arbitrary shape and builds for the first time a rigorous (exact at the Debye-Hückel level) analytical theory of electrostatic interactions of such particles at arbitrary distances. Numerical tests confirm that the proposed theory may also become especially useful in developing a new class of grid-free, fast, highly scalable solvers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.