Abstract

Polarization, as a vector nature of the electromagnetic wave, plays a fundamental role in optics. Determining the polarization state of light is required by many applications, spanning from remote sensing and material analysis to biology and microscopy. To achieve this goal, conventional methods necessitate cascading of multiple optical components and consequential measurements to estimate the Stokes parameters, rendering the entire optical system bulky, complex, and sensitive. Here a brand-new strategy is introduced for direct polarization readout based on dual-channel neuro-metasurfaces. Neuro-metasurfaces can independently manipulate two orthogonal linearly-polarized waves that can synthesize arbitrary polarization waves with a linear combination. By judiciously designing the output focus points, a unique polarization atlas is created that allows one-to-one correspondence from intensity ratio to polarization state. To implement this, polarization-sensitive metasurfaces are designed and the spatial layout is optimized using a diffractive neural network. The feasibility of this strategy is validated by numerical simulation and microwave experiments. These results pave a new avenue in realizing integrated and multifunctional detectors and demonstrate the potential of neuro-metasurfaces as an add-on for discomposing and composing spatial basis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call