Abstract

We study the backward scatterings of plane waves by reciprocal scatterers and reveal that $n$-fold ($n\geq3$) rotation symmetry is sufficient to secure invariant backscattering for arbitrarily-polarized incident plane waves. It is further demonstrated that the same principle is also applicable for infinite periodic structures in terms of reflection, which simultaneously guarantees the transmission invariance if there are neither Ohmic losses nor extra diffraction channels. At the presence of losses, extra reflection symmetries (with reflection planes either parallel or perpendicular to the incident direction) can be incorporated to ensure simultaneously the invariance of transmission and absorption. The principles we have revealed are protected by fundamental laws of reciprocity and parity conservation, which are fully independent of the optical or geometric parameters of the photonic structures. The optical invariance obtained is intrinsically robust against perturbations that preserve reciprocity and the geometric symmetries, which could be widely employed for photonic applications that require stable backscatterings or reflections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.